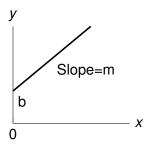
Outline

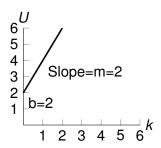
- Math Review
 - Algebra: Graphing
 - Calculus: Derivatives
 - Calculus: Partial Derivatives
- Economics Review
 - Marginal Cost = Marginal Benefit
- Video On Calculus:

https://www.youtube.com/watch?v=OVGyHhW_73g

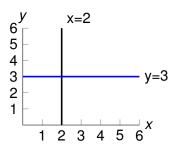

00- Math Review

Math Review: Algebra

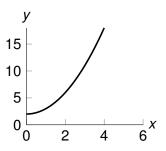
- You will NEED to know the shapes of the following:
 - Straight lines
 - Parabolas
 - Horizontal lines
 - Vertical lines
- Even if the variables we use are not called "y" and "x" like you might be used to.


Algebra Review: Graphing Lines

- Equation: $y = m \cdot x + b$
- m is the slope.
- b is the y-intercept.


Algebra Review: Graphing Lines Example

- Example: $U = 2 \cdot k + 2$
- U is our "y" or our dependent variable, and k is our "x" or indepedent variable.
- The slope or "m" is 2, and the intercept or "b" is 2.


Algebra Review: Vertical and Horizontal Lines

- Vertical lines take the form x = c.
- Horizontal lines take the form y = c.

Algebra Review: Parabolas

• Parabolas take the form $y = a \cdot x^2 + b$.

Calculus Review: Derivative Rules

- These are the calculus rules you need to know for Economics broadly. These slides review the rules in bold.
 - Power rule.
 - Product rule.
 - Quotient rule.
 - Chain rule.
 - Derivative of natural logs.
 - Derivative of exponential functions.
- We will also learn how to apply these rules with partial derivatives this semester.

Calculus Review: Power Rule

The derivative of the function $a \cdot x^k$ is

$$k \cdot a \cdot x^{k-1}$$
.

Example: The derivative of $2x^3$ is

$$3 \cdot 2 \cdot x^2 = 6 \cdot x^2.$$

Calculus Review: Product Rule

The derivative of the function $f(x) \cdot g(x)$ is

$$f'(x) \cdot g(x) + f(x) \cdot g'(x)$$
.

Example: The derivative of $(x^2) \cdot (5x)$ is

$$2x \cdot (5x) + (x^2) \cdot 5 = 10x^2 + 5x^2 = 15x^2.$$

Note We could have used the power rule.

$$(x^2) \cdot (5x) = 5x^3 \implies (5x^3)' = 15x^2.$$

Calculus Review: Log and Exponential Rules

- The derivative of $ln(x) = \frac{1}{x}$.
- The derivative of exp(x) = exp(x).

Calculus Review: Chain Rule

The derivative of the function $a \cdot (b + cx)^k$ is

$$k \cdot (b+cx)^{k-1} \cdot c = kc \cdot (b+cx)^{k-1}.$$

More Generally: The derivative of f(g(x)) is

$$f'(g(x)) \cdot g'(x)$$
.

Example: The derivative of $y = (3x)^2$ is

$$2\cdot(3x)\cdot 3=18x.$$